Increases the size of the cube by the specified
radius <parameter>r</parameter> in at least <parameter>n</parameter>
dimensions. If the radius is negative the cube is shrunk instead.
All defined dimensions are changed by the
radius <parameter>r</parameter>. Lower-left coordinates are decreased
by <parameter>r</parameter> and upper-right coordinates are increased
by <parameter>r</parameter>. If a lower-left coordinate is increased
to more than the corresponding upper-right coordinate (this can only
happen when <parameter>r</parameter> < 0) than both coordinates are
set to their average. If <parameter>n</parameter> is greater than the
number of defined dimensions and the cube is being enlarged
(<parameter>r</parameter> > 0), then extra dimensions are added to
make <parameter>n</parameter> altogether; 0 is used as the initial
value for the extra coordinates. This function is useful for creating
bounding boxes around a point for searching for nearby points.
</para>
<para>
<literal>cube_enlarge('(1,2),(3,4)', 0.5, 3)</literal>
<returnvalue>(0.5, 1.5, -0.5),(3.5, 4.5, 0.5)</returnvalue>
</para></entry>
</row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2 id="cube-defaults">
<title>Defaults</title>
<para>
This union:
</para>
<programlisting>
select cube_union('(0,5,2),(2,3,1)', '0');
cube_union
-------------------
(0, 0, 0),(2, 5, 2)
(1 row)
</programlisting>
<para>
does not contradict common sense, neither does the intersection:
</para>
<programlisting>
select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter
-------------
(0, 0),(1, 0)
(1 row)
</programlisting>
<para>
In all binary operations on differently-dimensioned cubes,
the lower-dimensional one is assumed to be a Cartesian projection, i. e., having zeroes
in place of coordinates omitted in the string representation. The above
examples are equivalent to:
</para>
<programlisting>
cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');
</programlisting>