quantified atom with other normal quantifiers (including
<literal>{</literal><replaceable>m</replaceable><literal>,</literal><replaceable>n</replaceable><literal>}</literal>
with <replaceable>m</replaceable> equal to <replaceable>n</replaceable>)
is greedy (prefers longest match).
</para>
</listitem>
<listitem>
<para>
A quantified atom with a non-greedy quantifier (including
<literal>{</literal><replaceable>m</replaceable><literal>,</literal><replaceable>n</replaceable><literal>}?</literal>
with <replaceable>m</replaceable> equal to <replaceable>n</replaceable>)
is non-greedy (prefers shortest match).
</para>
</listitem>
<listitem>
<para>
A branch — that is, an RE that has no top-level
<literal>|</literal> operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.
</para>
</listitem>
<listitem>
<para>
An RE consisting of two or more branches connected by the
<literal>|</literal> operator is always greedy.
</para>
</listitem>
</itemizedlist>
</para>
<para>
The above rules associate greediness attributes not only with individual
quantified atoms, but with branches and entire REs that contain quantified
atoms. What that means is that the matching is done in such a way that
the branch, or whole RE, matches the longest or shortest possible
substring <emphasis>as a whole</emphasis>. Once the length of the entire match
is determined, the part of it that matches any particular subexpression
is determined on the basis of the greediness attribute of that
subexpression, with subexpressions starting earlier in the RE taking
priority over ones starting later.
</para>
<para>
An example of what this means:
<screen>
SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})');
<lineannotation>Result: </lineannotation><computeroutput>123</computeroutput>
SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})');
<lineannotation>Result: </lineannotation><computeroutput>1</computeroutput>
</screen>
In the first case, the RE as a whole is greedy because <literal>Y*</literal>
is greedy. It can match beginning at the <literal>Y</literal>, and it matches
the longest possible string starting there, i.e., <literal>Y123</literal>.
The output is the parenthesized part of that, or <literal>123</literal>.
In the second case, the RE as a whole is non-greedy because <literal>Y*?</literal>
is non-greedy. It can match beginning at the <literal>Y</literal>, and it matches
the shortest possible string starting there, i.e., <literal>Y1</literal>.
The subexpression <literal>[0-9]{1,3}</literal> is greedy but it cannot change
the decision as to the overall match length; so it is forced to match
just <literal>1</literal>.
</para>
<para>
In short, when an RE contains both greedy and non-greedy subexpressions,
the total match length is either as long as possible or as short as
possible, according to the attribute assigned to the whole RE. The
attributes assigned to the subexpressions only affect how much of that
match they are allowed to <quote>eat</quote> relative to each other.
</para>
<para>
The quantifiers <literal>{1,1}</literal> and <literal>{1,1}?</literal>
can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE.
This is useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example,
suppose that we are trying to separate a string containing some digits
into the digits and the parts before and after them. We might try to
do that like this:
<screen>
SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)');
<lineannotation>Result: </lineannotation><computeroutput>{abc0123,4,xyz}</computeroutput>
</screen>