describes
the current (as of 2020) timekeeping practice in Paris. This specification
says that standard time has the abbreviation <literal>CET</literal> and
is one hour ahead (east) of UTC; daylight savings time has the
abbreviation <literal>CEST</literal> and is implicitly two hours ahead
of UTC; daylight savings time begins on the last Sunday in March at 2AM
CET and ends on the last Sunday in October at 3AM CEST.
</para>
<para>
The four timezone names <literal>EST5EDT</literal>,
<literal>CST6CDT</literal>, <literal>MST7MDT</literal>,
and <literal>PST8PDT</literal> look like they are POSIX zone
specifications. However, they actually are treated as named time zones
because (for historical reasons) there are files by those names in the
IANA time zone database. The practical implication of this is that
these zone names will produce valid historical USA daylight-savings
transitions, even when a plain POSIX specification would not.
</para>
<para>
One should be wary that it is easy to misspell a POSIX-style time zone
specification, since there is no check on the reasonableness of the
zone abbreviation(s). For example, <literal>SET TIMEZONE TO
FOOBAR0</literal> will work, leaving the system effectively using a
rather peculiar abbreviation for UTC.
</para>
</sect1>
<sect1 id="datetime-units-history">
<title>History of Units</title>
<indexterm zone="datetime-units-history">
<primary>Gregorian calendar</primary>
</indexterm>
<para>
The SQL standard states that <quote>Within the definition of a
<quote>datetime literal</quote>, the <quote>datetime
values</quote> are constrained by the natural rules for dates and
times according to the Gregorian calendar</quote>.
<productname>PostgreSQL</productname> follows the SQL
standard's lead by counting dates exclusively in the Gregorian
calendar, even for years before that calendar was in use.
This rule is known as the <firstterm>proleptic Gregorian calendar</firstterm>.
</para>
<para>
The Julian calendar was introduced by Julius Caesar in 45 BC.
It was in common use in the Western world
until the year 1582, when countries started changing to the Gregorian
calendar. In the Julian calendar, the tropical year is
approximated as 365 1/4 days = 365.25 days. This gives an error of
about 1 day in 128 years.
</para>
<para>
The accumulating calendar error prompted
Pope Gregory XIII to reform the calendar in accordance with
instructions from the Council of Trent.
In the Gregorian calendar, the tropical year is approximated as
365 + 97 / 400 days = 365.2425 days. Thus it takes approximately 3300
years for the tropical year to shift one day with respect to the
Gregorian calendar.
</para>
<para>
The approximation 365+97/400 is achieved by having 97 leap years
every 400 years, using the following rules:
<simplelist>
<member>
Every year divisible by 4 is a leap year.
</member>
<member>
However, every year divisible by 100 is not a leap year.
</member>
<member>
However, every year divisible by 400 is a leap year after all.
</member>
</simplelist>
So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600,
2000, and 2400 are leap years.
By contrast, in the older Julian calendar all years divisible by 4 are leap
years.
</para>
<para>
The papal bull of February 1582 decreed that 10 days should be dropped
from October 1582 so that 15 October should follow immediately after
4 October.
This was observed in Italy, Poland, Portugal, and Spain. Other Catholic
countries followed shortly after, but Protestant countries were
reluctant to change,