Two aggregates in the same schema can have the same name if they operate on
different input types. The
name and input data type(s) of an aggregate must also be distinct from
the name and input data type(s) of every ordinary function in the same
schema.
This behavior is identical to overloading of ordinary function names
(see <xref linkend="sql-createfunction"/>).
</para>
<para>
A simple aggregate function is made from one or two ordinary
functions:
a state transition function
<replaceable class="parameter">sfunc</replaceable>,
and an optional final calculation function
<replaceable class="parameter">ffunc</replaceable>.
These are used as follows:
<programlisting>
<replaceable class="parameter">sfunc</replaceable>( internal-state, next-data-values ) ---> next-internal-state
<replaceable class="parameter">ffunc</replaceable>( internal-state ) ---> aggregate-value
</programlisting>
</para>
<para>
<productname>PostgreSQL</productname> creates a temporary variable
of data type <replaceable class="parameter">stype</replaceable>
to hold the current internal state of the aggregate. At each input row,
the aggregate argument value(s) are calculated and
the state transition function is invoked with the current state value
and the new argument value(s) to calculate a new
internal state value. After all the rows have been processed,
the final function is invoked once to calculate the aggregate's return
value. If there is no final function then the ending state value
is returned as-is.
</para>
<para>
An aggregate function can provide an initial condition,
that is, an initial value for the internal state value.
This is specified and stored in the database as a value of type
<type>text</type>, but it must be a valid external representation
of a constant of the state value data type. If it is not supplied
then the state value starts out null.
</para>
<para>
If the state transition function is declared <quote>strict</quote>,
then it cannot be called with null inputs. With such a transition
function, aggregate execution behaves as follows. Rows with any null input
values are ignored (the function is not called and the previous state value
is retained). If the initial state value is null, then at the first row
with all-nonnull input values, the first argument value replaces the state
value, and the transition function is invoked at each subsequent row with
all-nonnull input values.
This is handy for implementing aggregates like <function>max</function>.
Note that this behavior is only available when
<replaceable class="parameter">state_data_type</replaceable>
is the same as the first
<replaceable class="parameter">arg_data_type</replaceable>.
When these types are different, you must supply a nonnull initial
condition or use a nonstrict transition function.
</para>
<para>
If the state transition function is not strict, then it will be called
unconditionally at each input row, and must deal with null inputs
and null state values for itself. This allows the aggregate
author to have full control over the aggregate's handling of null values.
</para>
<para>
If the final function is declared <quote>strict</quote>, then it will not
be called when the ending state value is null; instead a null result
will be returned automatically. (Of course this is just the normal
behavior of strict functions.) In any case the final function has
the option of returning a null value. For example, the final function for
<function>avg</function> returns null when it sees there were zero
input rows.
</para>
<para>
Sometimes it is useful to declare the final function as taking not just
the state value, but extra parameters corresponding to the aggregate's
input values. The main reason for doing this is if the final function
is polymorphic and the state