Some projects, especially GNOME applications, are built with the Meson Build System instead of calling Cargo directly. Using `rustPlatform.buildRustPackage` may successfully build the main program, but related files will be missing. Instead, you need to set up Cargo dependencies with `fetchCargoVendor` and `cargoSetupHook` and leave the rest to Meson. `rust` and `cargo` are still needed in `nativeBuildInputs` for Meson to use.
```nix
{
lib,
stdenv,
fetchFromGitLab,
meson,
ninja,
pkg-config,
rustPlatform,
rustc,
cargo,
wrapGAppsHook4,
blueprint-compiler,
libadwaita,
libsecret,
tinysparql,
}:
stdenv.mkDerivation (finalAttrs: {
pname = "health";
version = "0.95.0";
src = fetchFromGitLab {
domain = "gitlab.gnome.org";
owner = "World";
repo = "health";
tag = finalAttrs.version;
hash = "sha256-PrNPprSS98yN8b8yw2G6hzTSaoE65VbsM3q7FVB4mds=";
};
cargoDeps = rustPlatform.fetchCargoVendor {
inherit (finalAttrs) pname version src;
hash = "sha256-eR1ZGtTZQNhofFUEjI7IX16sMKPJmAl7aIFfPJukecg=";
};
nativeBuildInputs = [
meson
ninja
pkg-config
rustPlatform.cargoSetupHook
rustc
cargo
wrapGAppsHook4
blueprint-compiler
];
buildInputs = [
libadwaita
libsecret
tinysparql
];
# ...
})
```
## `buildRustCrate`: Compiling Rust crates using Nix instead of Cargo {#compiling-rust-crates-using-nix-instead-of-cargo}
### Simple operation {#simple-operation}
When run, `cargo build` produces a file called `Cargo.lock`,
containing pinned versions of all dependencies. Nixpkgs contains a
tool called `crate2Nix` (`nix-shell -p crate2nix`), which can be
used to turn a `Cargo.lock` into a Nix expression. That Nix
expression calls `rustc` directly (hence bypassing Cargo), and can
be used to compile a crate and all its dependencies.
See [`crate2nix`'s documentation](https://github.com/kolloch/crate2nix#known-restrictions)
for instructions on how to use it.
### Handling external dependencies {#handling-external-dependencies}
Some crates require external libraries. For crates from
[crates.io](https://crates.io), such libraries can be specified in
`defaultCrateOverrides` package in nixpkgs itself.
Starting from that file, one can add more overrides, to add features
or build inputs by overriding the hello crate in a separate file.
```nix
with import <nixpkgs> { };
((import ./hello.nix).hello { }).override {
crateOverrides = defaultCrateOverrides // {
hello = attrs: { buildInputs = [ openssl ]; };
};
}
```
Here, `crateOverrides` is expected to be a attribute set, where the
key is the crate name without version number and the value a function.
The function gets all attributes passed to `buildRustCrate` as first
argument and returns a set that contains all attribute that should be
overwritten.
For more complicated cases, such as when parts of the crate's
derivation depend on the crate's version, the `attrs` argument of
the override above can be read, as in the following example, which
patches the derivation:
```nix
with import <nixpkgs> { };
((import ./hello.nix).hello { }).override {
crateOverrides = defaultCrateOverrides // {
hello =
attrs:
lib.optionalAttrs (lib.versionAtLeast attrs.version "1.0") {
postPatch = ''
substituteInPlace lib/zoneinfo.rs \
--replace-fail "/usr/share/zoneinfo" "${tzdata}/share/zoneinfo"
'';
};
};
}
```
Another situation is when we want to override a nested
dependency. This actually works in the exact same way, since the
`crateOverrides` parameter is forwarded to the crate's
dependencies. For instance, to override the build inputs for crate
`libc` in the example above, where `libc` is a dependency of the main
crate, we could do:
```nix
with import <nixpkgs> { };
((import hello.nix).hello { }).override {
crateOverrides = defaultCrateOverrides // {
libc = attrs: { buildInputs = [ ]; };
};
}
```
### Options and phases configuration {#options-and-phases-configuration}