Home Explore Blog CI



kubernetes

7th chunk of `content/en/blog/_posts/2016-07-00-Cross-Cluster-Services.md`
dbeff4b4a4253bed9101fe4ebaa46542cf838f40fc70bb580000000100000a29
With the introduction of Federated Services and Cross-Cluster Service Discovery, this concept is extended to cover Kubernetes services running in any other cluster across your Cluster Federation, globally. To take advantage of this extended range, you use a slightly different DNS name (e.g. myservice.mynamespace.myfederation) to resolve federated services. Using a different DNS name also avoids having your existing applications accidentally traversing cross-zone or cross-region networks and you incurring perhaps unwanted network charges or latency, without you explicitly opting in to this behavior.



So, using our NGINX example service above, and the federated service DNS name form just described, let's consider an example: A Pod in a cluster in the us-central1-a availability zone needs to contact our NGINX service. Rather than use the service's traditional cluster-local DNS name ("nginx.mynamespace", which is automatically expanded to"nginx.mynamespace.svc.cluster.local") it can now use the service's Federated DNS name, which is"nginx.mynamespace.myfederation". This will be automatically expanded and resolved to the closest healthy shard of my NGINX service, wherever in the world that may be. If a healthy shard exists in the local cluster, that service's cluster-local (typically 10.x.y.z) IP address will be returned (by the cluster-local KubeDNS). This is exactly equivalent to non-federated service resolution.



If the service does not exist in the local cluster (or it exists but has no healthy backend pods), the DNS query is automatically expanded to "nginx.mynamespace.myfederation.svc.us-central1-a.example.com". Behind the scenes, this is finding the external IP of one of the shards closest to my availability zone. This expansion is performed automatically by KubeDNS, which returns the associated CNAME record. This results in a traversal of the hierarchy of DNS records in the above example, and ends up at one of the external IP's of the Federated Service in the local us-central1 region.



It is also possible to target service shards in availability zones and regions other than the ones local to a Pod by specifying the appropriate DNS names explicitly, and not relying on automatic DNS expansion. For example, "nginx.mynamespace.myfederation.svc.europe-west1.example.com" will resolve to all of the currently healthy service shards in Europe, even if the Pod issuing the lookup is located in the U.S., and irrespective of whether or not there are healthy shards of the service in the U.S. This is useful for remote monitoring and other similar applications.

Title: Federated Service Discovery and DNS Resolution
Summary
This passage explains how Federated Services and Cross-Cluster Service Discovery extend the concept of Kubernetes services to a global Cluster Federation. It uses an NGINX service example to show how a Pod in the us-central1-a availability zone can use the federated DNS name "nginx.mynamespace.myfederation" to resolve to the closest healthy shard, potentially in the local cluster. If the service is not locally available, the DNS query automatically expands to find the external IP of a nearby shard. It also describes how to explicitly target service shards in specific availability zones and regions, enabling remote monitoring applications.