Home Explore Blog Models CI



retrieve_chunks claude-4.5-haiku

total: 1, pass: 0, fail: 1

    retrieve_chunks [model]     run `retrieve_chunks` test
                                It tests the `rag retrieve-chunks` command.

TOC

Cases

b091d3349-linux
 

tested at: 2025-11-20T10:25:32.672961Z (47 days ago)

elapsed time: 302,259 ms

Error

Command '['cargo', 'run', '--release', '--no-default-features', '--', 'retrieve-chunks', 'How does the rust compiler implement type inference? I also wanna know whether it has subtyping.', '--model=claude-4.5-haiku', '--max-retrieval=5']' returned non-zero exit status 1.
Traceback (most recent call last):
  File "/home/ubuntu/Documents/ragit/tests/tests.py", line 835, in <module>
    test()
  File "/home/ubuntu/Documents/ragit/tests/tests.py", line 776, in <lambda>
    ("retrieve_chunks claude-4.5-haiku", lambda: retrieve_chunks(test_model="claude-4.5-haiku")),
                                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/Documents/ragit/tests/retrieve_chunks.py", line 39, in retrieve_chunks
    without_super_rerank = cargo_run(["retrieve-chunks", question, f"--model={test_model}", "--max-retrieval=5"], stdout=True)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/Documents/ragit/tests/utils.py", line 82, in cargo_run
    result = subprocess.run(args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/subprocess.py", line 571, in run
    raise CalledProcessError(retcode, process.args,
subprocess.CalledProcessError: Command '['cargo', 'run', '--release', '--no-default-features', '--', 'retrieve-chunks', 'How does the rust compiler implement type inference? I also wanna know whether it has subtyping.', '--model=claude-4.5-haiku', '--max-retrieval=5']' returned non-zero exit status 1.

Message

--- how do I retrieve chunks in a ragit knowledge-base? (--super-rerank) ---

--------------------------
uid: c12ce6107
source: 2nd chunk of docs/ragithub/openapi.yaml
title: Ragithub API Endpoint Documentation (Continued)
summary: This text describes additional API endpoints for the Ragithub application, including retrieving chunk lists, individual chunks, image lists, and individual images, all of which are accessible via GET requests with parameters such as user ID, repository name, chunk or image UIDs, and prefixes.
--------------------------
uid: bc7a93ce9
source: 1st chunk of docs/commands/retrieve-chunks.txt
title: Rag Retrieve Chunks Command
summary: The rag-retrieve-chunks command retrieves chunks relevant to a query, allowing for customization of retrieval and summary options, such as maximum retrieval, summaries, and output format, with additional features including super-rerank for improved results and configurable output formats like JSON.
--------------------------
uid: 1e07af62b
source: 1st chunk of docs/commands/tfidf.txt
title: Rag-TFIDF Command
summary: The rag-tfidf command is used for full-text search in a knowledge base using its TFIDF engine, allowing for keyword-based or query-based searches with various options for output formatting, including abbreviation of uid, limit on results, and JSON output for further processing or integration.
--------------------------
uid: 9f6bcb72f
source: 1st chunk of docs/pipeline.md
title: Ragit's RAG Pipeline Overview
summary: Ragit's RAG pipeline works by taking user input, extracting keywords, running a tfidf-search to retrieve relevant chunks, reranking the chunks for relevance, and then using the top chunks to generate a response.

suite